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A canonical biogenesis pathway 
involving sequential cleavage by the 

Drosha and Dicer RNAse III enzymes 
governs the maturation of most animal  
microRNAs. However, there exist a 
variety of alternative miRNA biogen-
esis pathways, most of which bypass 
Drosha processing. Recently, three 
groups described for the first time a 
vertebrate microRNA pathway that 
bypasses Dicer cleavage. This mecha-
nism was characterized with respect to 
the highly conserved vertebrate gene 
mir-451, for which Drosha processing 
yields a short (42 nucleotide) hairpin 
that is directly loaded into Ago2, the 
sole vertebrate “Slicer” Argonaute. Ago2-
mediated cleavage of this hairpin yields a 
30 nucleotide intermediate, whose 3' end 
is resected to generate the dominantly 
cloned ~23 nucleotide mature miR-451. 
Knowledge of this pathway provides an 
unprecedented tool with which to express 
microRNAs and small interfering RNAs 
in Dicer mutant cells. More generally, 
the mir-451 backbone constitutes a new 
platform for gene silencing that comple-
ments existing shRNA technology.

The “Dogma”  
of MicroRNA Biogenesis

MicroRNAs (miRNAs) are ~22-nucleo-
tide (nt) RNAs that are expressed in 
temporal- and spatial-specific manners 
to regulate diverse developmental and 
physiological processes in higher eukary-
otes.1,2 Animal miRNAs generally modu-
late gene expression via complementary 
target sequences in mRNAs, usually in  
3' untranslated region (3' UTRs), to effect 
translational repression or degradation.3 
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Target recognition frequently involves 
consecutive Watson-Crick pairing of posi-
tions 2–8 of the mature miRNA, also 
known as the “seed region.”4,5 This modest 
amount of complementarity has permit-
ted many animal miRNAs to accumulate 
hundreds of targets, and their aggregate 
target networks may encompass a major-
ity of animal transcripts.6,7

The best-studied “canonical pathway” 
for miRNA biogenesis is broadly con-
served amongst vertebrates and inver-
tebrates (Fig. 1A).8,9 Primary miRNAs 
(pri-miRNAs) bearing hairpin structures 
are first recognized and cleaved by the 
nuclear “Microprocessor” complex com-
posed of the RNase III enzyme Drosha 
and its dsRNA binding partner DGCR8 
(also known as Pasha in invertebrates). 
The resulting pre-miRNA hairpins are 
transported to the cytoplasm, where they 
are cleaved on their terminal loop ends 
by the RNase III enzyme Dicer to yield 
miRNA/miRNA* duplexes. One of the 
strands is typically preferentially loaded 
into an Argonaute (Ago) protein-contain-
ing effector complex to form the RNA-
induced silencing complex (RISC), which 
is guided to target transcripts according to 
the miRNA sequence.

Expanding the miRNA  
Reservoir via Non-Canonical  

Biogenesis Pathways

Studies from the past few years have pro-
vided ample evidence for the existence of 
alternative pathways that generate func-
tional miRNAs.10,11 A steady stream of 
surprises has emerged, as researchers have 
focused their attention on unconventional 
substrates that deviate from canonical 
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mechanisms can produce miRNAs by  
Drosha/DGCR8-independent strategies. 
For example, some small nucleolar RNAs 
(snoRNAs) utilize Dicer to generate both 
precursor and mature miRNA-like spe-
cies;18-21 transfer RNA (tRNA)-derived 
small RNAs (tsRNAs) are produced via 
precursor tRNAs cleavage by Dicer.22,23 
RNA polymerase III can generate defined 
transcripts that are not further modified 
by polyadenylation, and this process may 
produce endogenous short hairpin RNAs 
(endo-shRNAs) with 2-nt 3' overhangs 
that mimic pre-miRNAs and directly serve 
as Dicer substrates.15 In yet another varia-
tion, the murine γ-herpesvirus MHV68 
miRNA, which is fused to a tRNA in the 
primary transcript, is produced by tRNase 
Z cleavage 3' to the tRNA moiety to liber-
ate a pre-miRNA hairpin that undergoes 
a second cleavage by Dicer.24 Collectively, 
the miRNA reservoir is expanding through 
the usage of different Drosha/DGCR8-
independent, Dicer-dependent pathways.

annotated in C. elegans13 and diverse  
vertebrate genomes.14-16

Mirtrons, in turn, have fostered a diver-
sity of apparent “add-on” pathways, in 
which splicing is coupled to other exonu-
cleolytic (or potentially endonucleolytic) 
pathways. For example, in the Drosophila 
3' tailed mirtron pathway, only the 5' end 
of the mirtron is coincident with a splice 
site; a 3' extension ensues to the 3' splice 
acceptor. This type of spliced substrate 
was shown to be processed by both lariat 
debranchase and the nuclear RNA exo-
some complex, which removes the 3' “tail” 
to generate the pre-miRNA intermedi-
ate.17 The existence of 5' tailed mirtrons 
in avians16 and mammals15 is suggestive of 
yet another pathway for miRNA biogen-
esis, since the RNA exosome is specific for 
3'-5' processing. However, the biochemi-
cal details of their maturation remain to 
be worked out.

In addition to these sundry mirtron 
pathways, a dazzling array of other 

miRNAs in terms of their genomic loca-
tions, predicted secondary structures and 
conservation patterns.

The first major non-canonical pathway 
came with the recognition of mirtrons.12,13 
Like canonical miRNA loci, mirtrons 
generate cloned ~22 nt RNAs that adopt 
miRNA/miRNA* duplexes with 3' 
overhangs; however, their hallmark is 
that the genomic termini of miRNA/
miRNA* read pairs are defined precisely 
by splice donor and acceptor sites. Such 
a configuration suggested that the splic-
ing machinery might generate hairpin 
ends, thereby bypassing Drosha cleav-
age. Detailed studies in the Drosophila 
system indeed showed this to be the 
case, and further indicated that subse-
quent linearization by lariat debranching 
enzyme was required for these introns to 
adopt hairpin structures that serve as pre-
miRNA mimics. On the basis of these 
characteristic read mappings to short hair-
pin introns, mirtrons have been further 

Figure 1. (A) Canonical miRNA biogenesis. Primary miRNA (pri-miRNA) transcripts are cleaved in the nucleus by a complex of the Drosha RNAse III 
enzyme and its partner DGCR8 to yield a ~55–70 nt pre-miRNA hairpin. Following its translocation to the cytoplasm via Exportin-5, the pre-miRNA 
hairpin is cleaved on its loop end by a complex of the Dicer RNAse III enzyme and its partner TRBP/PACT. The resultant ~22 nt miRNA/miRNA* duplex 
is loaded into any of the 4 vertebrate Argonaute (AGO) proteins and one strand is released leaving behind the mature miRNA. (B) miR-451 biogenesis. 
mir-451 resides on a primary transcript operon with mir-144, which matures via the canonical miRNA pathway. Drosha/DGCR8 cleavage generates a 42 
nt pre-mir-451 hairpin, which resembles an Exportin-5 substrate (although this has not been directly demonstrated, thus the “?”). The pre-mir-451 hair-
pin is directly loaded into AGO proteins, but loading into non-slicing AGO proteins is abortive and these cannot mature mir-451 further. Loading into 
AGO2, the sole vertebrate “Slicer” capable of cleaving target strands, generates a 30 nt “Ago2-cleaved (ac)-pre-mir-451 hairpin.” This is then subject to 
a trimming reaction, which may occur in conjunction with a tailing reaction, to yield the dominant 23 nt mature miR-451.



www.landesbioscience.com Cell Cycle 4457

depleted under these conditions; thus 
miR-451 represented the first Dicer-
independent miRNA known.

The perfect pre-mir-451 hairpin struc-
ture suggested it as a possible substrate for 
mammalian Ago2, which can cleave the 
passenger strand of an extensively paired 
pre-miRNA at positions 10–11 across 
from hairpin 5' end.40 Consistent with 
this, miR-451 northern blotting revealed 
a series of hybridized bands larger than 
typical mature miRNAs, extending to 
~30 nt.35,37,38 Indeed, small RNA sequenc-
ing revealed cloned intermediates extend-
ing to 30 nt, which corresponds precisely 
to the position in the hairpin that would 
be the site of putative Ago2 slicing.35,37,38

By microarray analyses, the three 
groups and Rasmussen et al. found that 
miR-451 was the most downregulated 
miRNA in Ago2 mutant mouse fetal liver,37 
MZago2 mutant zebrafish embryos,38 and 
Ago2-/- mouse bone marrow35 and eryth-
roblasts,41 indicating that Ago2 is geneti-
cally required for miR-451 maturation. 
The links were strengthened by the find-
ings that Ago2,37,42 and mir-451,41,43-47 both 
play important roles during erythroid dif-
ferentiation. Perhaps most impressively, 
the Hannon group showed that knockin 
of a catalytically dead form of Ago2 exhib-
ited hematopoietic defects and specific loss 
of miR-451, implying that slicing activity 
is uniquely required for the generation of 
this miRNA.37

Since loss of mir-451 also depletes 
erythrocytes,41,45 the main location of 
miR-451 expression, it was possible that 
the decreased level of miR-451 partly rep-
resented an indirect effect on altered cell 
distribution in Ago2 mutants. A direct 
and essential role of Ago2 cleavage in 
miR-451 biogenesis was demonstrated 
by several methods. Tests of mutant mir-
451 hairpins that were unpaired at the 
putative Ago2 cleavage site, and tests of 
catalytically-dead Ago2 mutant in recon-
stituted Ago2 knockout MEFs or in vitro 
processing assays, all directly showed 
that Ago2 Slicer activity was essential 
for production of mature miR-451.35,37,38 
While Ago2-catalytic mutant and cata-
lytic-incompetent Ago1 could also incor-
porate pre-mir-451, no intermediate or 
mature species were detected in their 
immunoprecipitate (IP) as could be seen 

mutations within duplex regions, signi-
fying that the structure but not primary 
sequence is under selective pressure.33 This 
characteristic serves as an effective classi-
fier to distinguish genuine miRNA loci 
from other conserved genomic hairpins 
that do not generate ~22 nt short RNAs.34 
As it happens, mir-451 is a rare miRNA 
locus that defies the signature evolution-
ary profile of conserved miRNA genes: in 
addition to its mature sequence, its ter-
minal loop is also invariant from human 
to fish, while certain positions on the 
complementary hairpin arm are subject to 
divergence.35

A final consideration is the fact that 
the base pairing in pre-mir-451 is unusu-
ally perfect, whereas most other miRNA 
hairpins contain multiple unpaired 
nucleotides within the stem. Such hair-
pin imperfections are believed to pro-
mote unwinding of the miRNA/miRNA* 
duplex.36 Taken together with the strict 
conservation of the mir-451 loop, these 
details hinted that this locus might not in 
fact mature via a typical Dicer-generated 
miRNA/miRNA* duplex. The underly-
ing mechanism that generates this pecu-
liar miRNA was finally unveiled by recent 
papers from the Hannon, Giraldez and Lai 
labs.35,37,38 A combination of genetic and 
biochemical evidence yielded an aston-
ishing conclusion: miR-451 is generated 
by a Dicer-independent, Ago2-dependent 
mechanism (Fig. 1B).

miR-451 is Generated by  
a Dicer-Independent,  

Ago2-Mediated Pathway

The lower stem of pri-mir-451 between 
the stem-ssRNA junction and the 5' ter-
minus of pre-mir-451 is ~11 bp, implying 
that pri-mir-451 is a canonical substrate 
for Drosha.39 Indeed, knockdown35 or 
conditional knockout37 of Microprocessor 
components prevented miR-451 process-
ing, and in vitro processing assays demon-
strated that Drosha could directly cleave 
pri-mir-451 to generate a ~42 nt hairpin.37 
However, this short hairpin does not 
mature via Dicer, since miR-451 accu-
mulated effectively in Dicer conditional 
knockout ES cells,37 MEFs stably deleted 
for Dicer35 and in MZdicer mutant zebraf-
ish.38 All other miRNAs were obviously 

Many Clues Regarding  
the Potentially Unusual  
Biogenesis of miR-451

These myriad alternative miRNA path-
ways all converge upon the Dicer enzyme. 
Moreover, Dicer is the focal point for pro-
duction of small interfering RNAs (siR-
NAs), either from endogenous substrates 
or from exogenously applied substrates.25 
Therefore, a Dicer enzyme was widely 
considered to be essential for in vivo 
production of all miRNAs and siRNAs. 
However, there eventually seems to be an 
exception to every rule, and miRNA bio-
genesis is indeed no exception.

Many animal miRNAs genes are 
clustered in the genome, and such clus-
tering provided an additional mea-
sure of confidence in the likelihood of  
computationally-derived hairpin candi-
dates as bona fide miRNA genes. One such 
candidate was mir-451, a highly conserved 
hairpin located just downstream of the 
extant (and also highly conserved) locus 
mir-144, and shown to generate short RNA 
reads.26 Subsequent sequencing of small 
RNAs from red blood cells showed that 
miR-451 is abundant in both total RNAs27 
and Ago2 immunoprecipitates (IP) in this 
cell type,28 providing further evidence 
of it as a genuine miRNA. Nevertheless, 
it was clear from these early experiments 
that miR-451 was no typical miRNA: 
its dominant 23-nt reads extended across 
the terminal loop,28 which never happens 
in other known miRNAs. Moreover, the 
stem of predicted pre-mir-451 structure 
is only 17 basepairs (bp) in length. This 
is seemingly too short to serve as sub-
strate for Dicer, which requires >19 bp 
stem in addition to a 2-nt 3' overhang 
for efficient hairpin cleavage,29 and most  
pre-miRNAs have longer stem than this 
minimum.30

Another clue as to the non-canon-
ical processing of mir-451 came from 
the details of its evolution. Virtually all 
miRNA genes that are reasonably well-
conserved (e.g., amongst Drosophilids or 
amongst vertebrates) have a distinctive 
evolutionarily profile, in which the diver-
gence of the terminal loop is far greater 
than either of the hairpin arms.31,32 In 
contrast, most structural RNAs are char-
acterized by consistent or compensatory 
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gene silencing, constituting a complemen-
tary system to the widely used sh-miRNA 
technology for siRNA expression.54 An 
ongoing issue with gene silencing is the 
off-target effects, which can occur with 
unintended miRNA* strand activity or by 
unintended silencing of seed-bearing tar-
gets.55-57 In principle, mir-451-based strat-
egies may offer some advantages since its 
maturation does not involve a star strand, 
and its functional species accumulate 
exclusively in Slicer Argonaute. It remains 
to be seen if these unique aspects of miR-
451 biogenesis correlate with any improved 
functional characteristics. Finally, it is 
worthwhile considering that mechanistic 
studies which demonstrate that loss of 
Dicer potentiates tumorigenesis in animal 
models,58,59 and loss of Dicer is correlated 
with a growing number of human diseases 
and cancers, and to have prognostic value 
in predicting their severity and/or aggres-
sivity.60-64 If there are key target genes or 
pathways that become deregulated in these 
settings, they may potentially be alleviated 
by silencing appropriate genes. mir-451 
backbones should have an advantage over 
sh-miRNA vectors in Dicer compromised 
cells, and would be the only possibility for 
siRNA expression in Dicer-deficient cells.

Open Questions Regarding  
mir-451 Biogenesis

Several interesting questions remain 
unsolved regarding the biogenesis of miR-
451. First, how is the 30-nt, Ago2-cleaved 
pre-mir-451 (ac-pre-mir-451) trimmed 
back to yield the mature product? Using in 
vitro processing assay with synthetic 42-nt 
pre-mir-451 and recombinant Ago2, the 
Giraldez group showed that the process-
ing of mir-451 stopped at ac-pre-mir-451, 
but that addition of RNAse I promoted 
the generation of shorter products.38 This 
is consistent with the view that a cellular 
nuclease(s) is required in the trimming 
step. It has been reported that pre-let-7 sta-
bility is regulated post-transcriptionally by 
terminal uridylyl transferase 4 (TUT4),65,66 
which adds multiple uridine residues to the 
3' end of a pre-miRNA (tailing) that pos-
sibly recruit a nuclease to trigger miRNA 
degradation (trimming). Recently, mature 
miRNAs that encounter perfectly com-
plementary targets were also found to be 

on Ago2 but not Dicer. Finally, the Lai 
group performed extensive reprogram-
ming experiments using plasmid vectors 
in which mir-451 backbone was repro-
grammed to express a variety of other 
canonical miRNA sequences.35 These were 
shown to be highly active at suppressing 
sensor constructs in Dicer-/- MEFs and to 
generate mature miRNA products in this 
context. In addition, suppression of seed-
bearing sensors by reprogrammed mir-451 
constructs was shown. This indicated that 
5' ends of reprogrammed small RNAs 
were generated accurately when they were 
processed from primary transcripts, as 
opposed to synthetic pre-mir-451 hairpins 
bearing pre-defined 5' ends.

These encouraging reprogramming 
experiments indicate that the mir-451 
backbone is an exciting tool for in vivo 
expression of short regulatory RNAs. For 
example, ~50 publications have described 
the consequences of systemic or condi-
tional ablation of Dicer, with the general 
conclusion that every place and time 
assayed in the mouse probably requires 
Dicer function. However, the prospects of 
assigning specific miRNAs to these phe-
notypes have been largely limited to ex 
vivo settings using derived cell lines that 
could be transfected with short RNAs. 
Although the miRNA repertoire of ani-
mal genomes is broad, a relatively small 
pool of miRNAs often accounts for the 
bulk of miRNA expression in particular 
cell types. So it is conceivable that individ-
ual miRNAs could contribute dispropor-
tionately to Dicer mutant phenotypes. For 
example, the similarities between Dicer 
conditional knockout52 and a specific dele-
tion of the mir-17-92 cluster53 during B 
lymphocyte development suggested that 
this miRNA cluster plays a major role 
in this setting. Now, using the mir-451 
system, one can envision sophisticated 
experiments to express individual miR-
NAs in various Dicer knockout tissues 
using retroviral/lentiviral vectors, or even 
genomically encoded transgenes. Evidence 
from genetic rescues could go a long way 
towards pinpointing miRNAs of particu-
lar phenotypic importance in particular 
developmental or physiological settings.

Experiments using the p53:mir-451 
mimic37 provided evidence for the util-
ity of the mir-451 backbone for designer 

in Ago2-IP.35,37 Finally, purified wildtype, 
but not catalytically dead, Ago2 complex 
could generate the 30 nt species from syn-
thetic pre-mir-451 hairpin in vitro.37 Taken 
together, the unconventional structure 
of mir-451 provides a platform for Ago2 
Slicer-dependent, Dicer-independent non-
canonical miRNA biogenesis.

Application of the mir-451  
Backbone for Gene Silencing

The broad and flexible usage of canonical 
miRNAs is reflected in the wide diver-
sity of miRNA hairpin sequences and 
structures. In keeping with this, miRNA 
hairpins are easily reprogrammed with 
arbitrary sequences to silence target tran-
scripts of choice. Indeed, sh-miRNA con-
structs that mimic endogenous miRNA 
substrates may circumvent host responses 
against foreign nucleic acids.48 However, 
as there is apparently only one vertebrate 
miRNA known to date that utilizes the 
Dicer-independent pathway, it was less 
clear that mir-451 could necessarily be 
reprogrammed.

The Hannon group used synthetic 
mir-451-like RNA hairpins repro-
grammed with let-7c or p53-targeting 
sequence, and showed that these could 
repress a GFP reporter containing let-7c 
target sites as well as the protein level of 
p53, respectively.37 However, it was not 
explicitly shown that these hairpins are 
processed by the miR-451 pathway, and 
other studies showed that Ago2 is capable 
of directly incorporating pre-miRNAs 
and other long RNA species and using 
these as guide strands for target cleav-
age.49 The Giraldez group used an in vivo 
genetic assay to test the biological func-
tion of reprogrammed mir-451 hairpins.38 
They previously showed that as miRNAs 
in the miR-430 family are the first and 
most highly expressed miRNAs during 
zebrafish embryogenesis, many aspects of 
the MZDicer phenotype are specifically 
due to loss of this miRNA activity.50,51 
They found that miR-430 expressed from 
a synthetic pre-mir-451 RNA backbone, 
but not from a pre-mir-430 backbone, 
could rescue MZDicer mutant embryonic 
phenotypes.38 By in vitro processing assay, 
they further demonstrated the processing 
of remodeled miR-430 was dependent 
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new platform for gene suppression. It 
is interesting to note that archaebacte-
rial genomes encode Argonaute pro-
teins,68-70 but not apparently Drosha or 
Dicer enzymes. It has been reported that 
Dicer-independent “primal” short RNAs 
are directly incorporated to Ago1 in 
Schizosaccharomyces pombe, and serve to 
initiate Dicer-dependent siRNA ampli-
fication during heterochromatin forma-
tion.71 It has also been previously reported 
that the miRNA-like RNA-2 (milR-2) in 
Neurospora can be produced by direct 
loading of the pre-miRNA-like hairpin to 
Argonaute protein QDE-2, whose Slicer 
activity is responsible for the processing 
of pre-milR-2.72 Such studies may suggest 
that the direct loading and processing of 
small RNA by Argonaute proteins is an 
ancient strategy, and conceivably may have 
preceded the incorporation of RNAse III 
enzymes into small RNA pathways.
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